Preface
1 Introductory Statistical Concepts
1.0 Preliminaries and Overview
1.1 Sampling Models and Likelihoods
1.2 Practical Examples
1.3 Large Sample Properties of Likelihood Procedures
1.4 Practical Examples
1.5 Some Further Properties of Likelihood
1.6 Practical Examples
1.7 The Midcontinental Rift
1.8 A Model for Genetic Traits in Dairy Science
1.9 Least Squares Regression with Serially Correlated Errors
1.10 Annual World Crude Oil Production(1880-0972)
2 The Discrete Version of Bayes' Theorem
2.0 Preliminaries and Overview
2.1 Bayes' Theorem
2.2 Estimating a Discrete-Valued Parameter
2.3 Applications to Model Selection
2.4 Practical Examples
2.5 Logistic Discrimination and the Construction of Neural Nets
2.6 Anderson's Prediction of Psychotic Patients
2.7 The Ontario fetal Metabolic Acidosis Study
2.8 Practical Guidelines
3 Models with a Single Unknown Parameter
3.0 Preliminaries and Overview
3.1 The Bayesian Paradigm
3.2 Posterior and Predictive Inferences
3.3 Practical Examples
3.4 Inferences for a Normal Mean with Known Variance
3.5 Practical Examples
3.6 Vague Prior Information
3.7 Practical Examples
3.8 Bayes Estimators and Decision Rules and Their Frequency Properties
3.9 Practical Examples
3.10 Symmetric Loss Functions
3.11 Practical Example:Mixtures of Normal Distributions
4 The Expected Utility Hypothesis
……
5 Models with Several Unknown Parameters
6 Prior Structures,Posterior Smoothing,and Bayes-Stein Estimation
References
Author Index
Subject Index