本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
本书涉及的主题:
数据分析;
数据清洗;
数据可视化;
探索性数据分析;
概率分布与假设检验;
群组分析;
购物篮分析;
时间序列分析。
本书突出的特点:
系统讨论基于Python的数据分析环境构建与数据分析流程;
将数据分析理论与实践结合,基于真实的案例介绍数据分析。
本书是一本系统讨论Python数据分析基础与案例实战的教程。全书共分为上下两篇:上篇Pandas数据分析基础(第1章~第10章),首先介绍了什么是数据分析、数据分析的基本流程、如何构建基于Python的数据分析开发环境,之后上篇深入讨论了如何利用Python中的Pandas库进行基本的数据操作、数据清洗、数据整理,以及如何对数据进行可视化,最后第10章用一个电商销售数据的分析案例对上篇的知识进行了总结。下篇Python数据分析实战(第11章~第21章)目的是让读者体会到数据分析能干什么,目标是尽可能多的为读者展示各种数据分析应用。下篇中将讨论数据分析在企业中的应用案例,例如客户群组分析、客户细分、A/B测试,客户购物篮分析等;同时下篇也介绍了数据分析在生活中的应用,例如利用数据分析找工作、进行房价分析、进行股票投资的案例。此外下篇也对时间序列数据,大规模数据分析等进行了讨论。通过这些案例希望读者能够理解数据分析是没有边界的,只要能提出问题,就能找到它的用武之地。随着人类正从信息时代走向数据时代,大数据可视化应用的火爆发展,地理信息数据可视化也受到了越来越多的重视。作为地理数据应用的最后一步,地理信息数据的可视化,不仅是为了酷炫好看,还是为了将空间分布上的规律更加简洁直观的展示出来,同时挖掘更深层次的信息,因此本书也额外提供了如何利用Basemap库和Folium库完成地理信息数据的可视化教程供读者单独下载。
江雪松:2001年获工学硕士学位,曾服务于华为、诺基亚等公司,有丰富的产品团队与研发团队管理经验。先后担任项目经理、研发经理、产品研发负责人,管理多个产品全球支持与交付团队,软件维护业务。
当今是一个数据的时代!对于企业,数据分析可以帮助我们优化业务;发现新业务机会;创造新的商业价值。对于个人,通过传感设备把日常生活及身体锻炼的各项指标进行数据化处理,最终完成个人的量化分析,协助我们养成生活规律,更高质量地生活。《Python数据分析》将理论与实战结合,向读者展示了大量基于Python的数据分析及其应用,是数据分析人员不可多得的一本入门与进阶书籍。
——黄彦成 浙江大学杭州州力数据科技有限公司副总经理
《Python数据分析》内容精练、重点突出、实例丰富,是广大数据分析工作者必备的入门参考书,也适合作为从事Pyhton程序设计者的参考读物。书中很多案例,可以举一反三,二次开发应用。
——黄海 美国Amazon公司研发经理
《Python数据分析》系统介绍了数据分析的基本理论与方法,并结合Pandas工具库由浅入深地对数据分析的实践进行了论述。全书知识全面、案例丰富,对数据分析的入门者和提高者都具有很大参考价值。
——缪敬 OPPO公司通信架构师
在系统测试工作中,每天都会产生大量的数据——包括测试计划、测试用例、 测试配置、测试执行、日志、缺陷报告,等等。 如果没有数据分析与处理的思想与方法,即使有海量的数据,我们可能也无不能发它们的价值。《Python数据分析》可以帮助测试工程师建立据思维,对日常工作中产生的数据进行整理和分析,并利用分析结果去提高测试工作的有效性,提高自动化水平。
——杨剑飞 美国EMC公司高级主任工程师